China Custom Powder Metallurgy Stainless Steel Pinion Shaft Metal Plastic Spur Brass Small Spiral Angular Straight Bevel Small Gear bevel gearbox

Product Description

Custom Titanium/Tungsten Alloys/Stainless Steel/MIM Powder Metallurgy Watch Clock Faucet Digital Camera gun Metal Slider Gears Metal Injection Molding OEM Parts

Product Description

Here are some products that can be made using MIM (Metal Injection Molding) process:

1. Medical implants and devices, such as bone screws, dental implants, and surgical instruments.
2. Firearms components, including triggers, hammers, and other small parts.
3. Aerospace and defense parts, such as gears, brackets, and housings.
4. Electronics components, including connectors, switches, and small gears.
5. Automotive components, including engine components, brake system components, and suspension parts.
6. Jewelry components, including clasps, bezels, and decorative elements.
7. Consumer goods parts, such as eyeglass frames, watch components, and small gadgets.
8. Industrial tool parts, including inserts, blades, and cutting tools.
9. Musical instrument components, such as guitar parts and trumpet valves.
10. Sporting equipment components, including golf club heads, fishing reel parts, and bike components.

These are just a few examples of the many products that can be made using the MIM process. With its ability to produce complex geometries and high-quality finishes, MIM is an ideal manufacturing process for a wide range of industries and applications.

MIM Parts Tolerance
The tolerances for MIM (Metal Injection Molding) parts are typically very close and precise. In general, tolerances for MIM parts can be as tight as +/- 0.5% of the dimension, or +/- 0.005 inches (0.127 mm), whichever is greater. However, the specific tolerance requirements will depend on the application and the design of the part.
The MIM process is capable of producing complex shapes with high accuracy and repeatability, making it possible to achieve very tight tolerances. Additionally, the material properties of MIM parts are highly consistent, which further contributes to the precision and consistency of the final product.
It’s important to note that achieving tight tolerances may require additional steps, such as post-processing or secondary operations, to ensure that the parts meet the required specifications. Additionally, the cost of producing parts with tight tolerances can be higher due to the additional time and effort required to achieve them.

MIM Parts Advantage

1. Complex geometries: MIM can produce complex shapes and geometries that are difficult or even impossible to achieve with traditional manufacturing methods. This enables designers to create parts with intricate features and high functionality.
2. High precision: The MIM process can achieve very tight tolerances, making it possible to produce parts with high accuracy and consistency.
3. Excellent surface finish: MIM parts have a high-quality surface finish, which eliminates the need for additional finishing operations.
4. Versatility: MIM can produce parts from a range of materials, including stainless steel, low alloy steels, tool steels, titanium alloys, and more. This makes it possible to create parts with a wide range of mechanical properties and applications.
5. Cost-effective: MIM is a cost-effective manufacturing process, especially for small to medium-scale production runs. It can eliminate the need for multiple manufacturing steps and reduce material waste, resulting in lower overall costs.
Overall, MIM parts offer a range of benefits for manufacturers and customers alike, including the ability to create complex geometries, high precision, excellent surface finishes, versatility, and cost-effectiveness.

 

Detailed Photos

 

The MIM Process

the MIM (Metal Injection Molding) process can be broken down into several steps:

1. Formulation: The first step in the MIM process is to formulate the feedstock. This typically involves mixing a fine metal powder with a thermoplastic binder material and sometimes a lubricant. The binder material helps to hold the metal particles together and enables them to flow like plastic.

2. Injection molding: The feedstock is then injected into a mold cavity using an injection molding machine. The mold is typically made from steel or other durable materials and is designed to produce the desired shape of the final part.

3. Debinding: Once the part has been molded, it is subjected to a debinding process, which removes the binder material from the metal particles. This is typically done by heating the part in a CHINAMFG or using a solvent.

4. Sintering: After debinding, the part is subjected to a high-temperature sintering process. This process fuses the metal particles together, forming a CHINAMFG metal part with the desired mechanical properties. The sintering process can take several hours to complete, depending on the size and complexity of the part.

5. Finishing: After sintering, the final part may undergo additional finishing operations, such as polishing, machining, or plating, to achieve the desired surface finish and tolerances.

Overall, the MIM process is a highly versatile and precise manufacturing method that is capable of producing complex metal parts with high accuracy and consistency. It is often used in industries such as medical devices, firearms, aerospace, electronics, and automotive, where precision, complexity, and cost-effectiveness are key considerations.

 

Product Parameters

The Material of the MIM Product

Material System Material Composition Typical Applications
Low Alloy Steel Fe-2Ni , Fe-8Ni Automobile, machinery, and other industries, particularly in structural parts
Stainless Steel 316L,17-4PH,420,440C Medical equipment, clocks, watches
Carbide WC-Co Various tools, clocks, watches
Ceramic Al2O3 ,ZrO2 ,SiO2 IT electronics, daily necessities, watches
Heavy Alloys W-Ni-Fe,W-Ni-Cu,W-Cu The arms industry, communications, daily necessities
Titanium Ti,Ti-6Al-4V Medical and Firearm structural parts
Magnetic Materials Fe, NdFeB,SmCo5, Fe-Si Magnetic properties of the various components
Tool Steel CrMo4,M2 Tools

Typical properties of several MIM materials

Materials Density Hardness Tensile Strength Elongation
g/cm³ Rockwell Mpa %
Fe-based alloys MIM-2200(Sintered) 7.65 45HRB 290 40
MIM-2700(Sintered) 7.65 69HRB 440 26
MIM-4605(Sintered) 7.62 62HRB 415 15
MIM-4605(Quenching and tempering) 7.62 48HRC 1655 2
Stainless steel MIM-316L(Sintered) 7.92 67HB 520 50
MIM-17-4PH(Sintered) 7.5 27HRC 900 6
MIM-17-4PH(Sintered) 7.5 40HRC 1185 6
MIM-430L(Sintered) 7.5 65HRB 415 25
Tungsten alloys 95%W-Ni-Fe 18.1 30 960 25
97%W-Ni-Fe 18.5 33 940 15
Carbide YG8X 14.9 HRA90 Bending Strength 2300  
Fine Ceramics Al2O3 3.98 HRA92 Bending Strength 2300  

Packaging & Shipping

 

  1. We prefer DHL or TNT express or other air freight between 1kg-100kg.
  2. we choose sea freight of more than 100kg or more than 1CBM
  3. As per customized specifications.

 

Company Profile

About us

HangZhou CHINAMFG Technology Co., Ltd has been an established manufacturer since 2008. It is located in HangZhou City, ZheJiang Province, which is close to ZheJiang . The CHINAMFG Technology is fully equipped with all kinds of metal injection molding equipment and Powder Metallurgy equipment.
We specialize in tooling design and product development. We can work with materials such as low alloy steel, stainless steel, tool steel, and titanium steel. We serve a diverse range of applications in diverse industries – Automotive, Industrial, Electronics, and Medical. As 1 of the leading suppliers of metal parts in China, we offer high-quality, custom, precision parts at competitive prices according to customer drawings and specifications.

Our advantage in the industrial market is that we can provide competitive prices for our customers. We have a completely competitive metal parts provider and supply chain solution. With a strong focus on continual improvement, we only utilize best practices to ensure that the work we do for our customers is done in the most efficient, precise, and cost-effective way possible.
The focus of Machining Design Associated has been and always will be on developing and maintaining lasting relationships with customers. We are proud to be large enough to handle our customer needs yet small enough to offer the personal attention customers appreciate.

We have full OEM Experience worldwide, providing them with One-stop solutions for a broad range of applications. We believe in quality and on-time delivery is our corn idea in order to meet our customers’ requirements.

We look CHINAMFG to cooperating with you!

 

Our Advantages

Why Choice Emitech as your MIM parts supplier, there may be several reasons why they could be a good choice:
1. Experience: CHINAMFG may have significant experience in the MIM industry, with a proven track record of producing high-quality parts for various applications.
2. Precision: CHINAMFG may use advanced technology and equipment to manufacture MIM parts with tight tolerances and high precision, ensuring consistent quality.
3. Customization: CHINAMFG may work closely with its customers to develop customized MIM parts that meet specific requirements and specifications.
4. Material Variety: CHINAMFG may offer a wide range of material options for MIM, including stainless steel, low alloy steels, tool steels, titanium alloys, and more, enabling their customers to choose the best material for their applications.
5. Cost-effectiveness: CHINAMFG may offer competitive pricing for their MIM parts, making it a cost-effective option for small to medium-scale production runs.
If CHINAMFG meets your specific needs and requirements, they may be a good choice for your MIM parts supplier, based on factors such as experience, precision, customization, material variety, and cost-effectiveness.

After Sales Service

Factory Supply High Demand aluminum machining parts factory
We usually provide 12 Months of repair service. If our duty, we will respond to send the new parts.

Our Service

 

Our Processing CNC center, CNC milling, CNC turning, drilling, grinding, bending, stamping, tapping,
Surface finish Polishing, sandblasting, Zinc-plated, nickel-plated, chrome-plated, silver-plated, gold-plated, imitation gold-plated,
Tolerance 0.05mm~0.1mm
QC System 100% inspection before shipment
Drawing format CAD / PDF/ DWG/ IGS/ STEP
Packaging Plastic bag/Standard package / Carton or Pallet / As per customized specifications
Payment Terms 30 -50%T/T in advance, 70-50% balance before delivery; Pay Pal or Western Union is acceptable.
Trade terms EXW, FOB, and CIF, As per the customer’s request
Shipment Terms

1)We prefer DHL, TNT express, or other air freight between 1kg-100kg.

2) we prefer sea freight of more than 100kg or more than 1CBM
3) As per customized specifications.

Note The CNC machining parts are usually custom-made based on the customer’s drawings and samples. So we need the Down Payment

 

After-sales Service: Repaire
Warranty: Half a Year
Condition: New
Certification: CE, RoHS, GS, ISO9001
Standard: DIN, ASTM, GOST, GB, JIS, ANSI, BS
Customized: Customized
Customization:
Available

|

Customized Request

bevel gear

Can bevel gears be used in precision manufacturing equipment?

Yes, bevel gears can be used in precision manufacturing equipment due to their ability to transmit motion and power at varied angles with high accuracy. Here’s a detailed explanation:

Bevel gears are well-suited for precision manufacturing equipment where precise motion control, high torque transmission, and accurate angular positioning are essential. Here are some key reasons why bevel gears are suitable for such applications:

  1. Angular Transmission: Bevel gears excel at transmitting motion and power between intersecting shafts at different angles. In precision manufacturing equipment, where components often require precise angular positioning, bevel gears provide an efficient means of achieving the necessary motion transfer. They allow for smooth and accurate rotation, ensuring precise alignment and positioning of machine components.
  2. Compact Design: Bevel gears have a compact design, making them suitable for applications where space is limited. In precision manufacturing equipment, where machines often have complex structures and require tight integration of components, the compact size of bevel gears allows for efficient utilization of available space. This is particularly advantageous when designing compact and high-precision machinery.
  3. High Torque Transmission: Bevel gears are capable of transmitting high torque loads, making them suitable for precision manufacturing equipment that requires the transmission of substantial power. Whether it’s in rotary tables, indexing mechanisms, or gearboxes, bevel gears can efficiently transfer high torque while maintaining accuracy and precision in motion control.
  4. Accuracy and Backlash Control: In precision manufacturing equipment, minimizing backlash and ensuring accurate motion control are critical. Bevel gears can be manufactured with high precision to achieve tight tolerances and minimal backlash. This allows for precise positioning, accurate motion control, and repeatable performance, which are essential in precision manufacturing processes.
  5. Customization Options: Bevel gears can be customized to meet specific requirements of precision manufacturing equipment. Different tooth profiles, gear ratios, materials, and surface treatments can be employed to optimize the gear performance for specific applications. This customization capability allows gear engineers to design bevel gears that precisely match the needs and specifications of the equipment.

Examples of precision manufacturing equipment where bevel gears are commonly used include CNC machines, milling machines, gear hobbing machines, rotary tables, indexing mechanisms, and various types of gearboxes. These machines rely on the precise and reliable motion transmission provided by bevel gears to achieve accurate and high-quality manufacturing processes.

It is important to note that the selection and design of bevel gears for precision manufacturing equipment should consider factors such as load requirements, speed, operating conditions, backlash limitations, and noise considerations. Gear engineers and machine designers often conduct detailed analyses and calculations to ensure the bevel gears meet the necessary performance criteria and contribute to the overall precision and reliability of the equipment.

In summary, bevel gears are well-suited for precision manufacturing equipment due to their ability to provide accurate angular transmission, compact design, high torque transmission, and customization options. Incorporating bevel gears in precision machinery contributes to precise motion control, accurate positioning, and reliable performance, enabling the production of high-quality and precise manufactured components.

bevel gear

How do you address noise and vibration issues in a bevel gear system?

Noise and vibration issues in a bevel gear system can be disruptive, affect performance, and indicate potential problems. Addressing these issues involves identifying the root causes and implementing appropriate solutions. Here’s a detailed explanation:

When dealing with noise and vibration in a bevel gear system, the following steps can help address the issues:

  • Analyze the System: Begin by analyzing the system to identify the specific sources of noise and vibration. This may involve conducting inspections, measurements, and tests to pinpoint the areas and components contributing to the problem. Common sources of noise and vibration in a bevel gear system include gear misalignment, improper meshing, inadequate lubrication, worn gears, and resonance effects.
  • Check Gear Alignment: Proper gear alignment is crucial for minimizing noise and vibration. Misalignment can cause uneven loading, excessive wear, and increased noise. Ensure that the bevel gears are correctly aligned both axially and radially. This can involve adjusting the mounting position, shimming, or realigning the gears to achieve the specified alignment tolerances.
  • Optimize Gear Meshing: Proper gear meshing is essential for reducing noise and vibration. Ensure that the gear teeth profiles, sizes, and surface qualities are suitable for the application. Improper tooth contact, such as excessive or insufficient contact, can lead to noise and vibration issues. Adjusting the gear tooth contact pattern, modifying gear profiles, or using anti-backlash gears can help optimize gear meshing and reduce noise and vibration.
  • Ensure Adequate Lubrication: Proper lubrication is critical for minimizing friction, wear, and noise in a bevel gear system. Insufficient lubrication or using the wrong lubricant can lead to increased friction and noise generation. Check the lubrication system, ensure the correct lubricant type and viscosity are used, and verify that the gears are adequately lubricated. Regular lubricant analysis and maintenance can help maintain optimal lubrication conditions and reduce noise and vibration.
  • Inspect and Replace Worn Gears: Worn or damaged gears can contribute to noise and vibration problems. Regularly inspect the gears for signs of wear, pitting, or tooth damage. If significant wear is detected, consider replacing the worn gears with new ones to restore proper gear meshing and reduce noise. Additionally, ensure that the gear materials are suitable for the application and provide adequate strength and durability.
  • Address Resonance Effects: Resonance can amplify noise and vibration in a bevel gear system. Identify any resonant frequencies within the system and take steps to mitigate their effects. This may involve adjusting gear parameters, adding damping materials or structures, or altering the system’s natural frequencies to minimize resonance and associated noise and vibration.

Implementing these steps can help address noise and vibration issues in a bevel gear system. However, it is important to note that each system is unique, and the specific solutions may vary depending on the circumstances. Consulting with experts in gear design and vibration analysis can provide valuable insights and ensure effective resolution of noise and vibration problems.

bevel gear

What is the purpose of using bevel gears in right-angle drives?

Using bevel gears in right-angle drives serves several purposes and offers advantages in transmitting power efficiently and smoothly at a 90-degree angle. Here’s a detailed explanation of the purpose of using bevel gears in right-angle drives:

  • Change in Direction: One of the primary purposes of using bevel gears in right-angle drives is to change the direction of rotational motion. Bevel gears are designed to transmit power between intersecting or non-parallel shafts, allowing the input shaft and output shaft to be oriented at a 90-degree angle. This is particularly useful in applications where the space or mechanical constraints require a change in direction, such as in automotive differentials or power transmission systems that require a compact design.
  • Space Efficiency: Bevel gears offer a space-efficient solution for right-angle drives. Their compact design allows for effective power transmission in applications with limited space. By using bevel gears, the drive system can be designed to occupy a smaller footprint compared to other mechanisms, making them suitable for applications where space is a critical consideration.
  • Torque Transmission: Bevel gears are capable of transmitting high torque loads, making them suitable for right-angle drives. The meshing of the gear teeth provides a strong and reliable connection, allowing for efficient power transmission even at a 90-degree angle. This makes bevel gears suitable for applications that require the transmission of substantial torque, such as in industrial machinery, agricultural equipment, and heavy-duty power transmission systems.
  • Speed Adjustment: Bevel gears in right-angle drives enable speed adjustment between the input and output shafts. By selecting bevel gears with different tooth counts, the rotational speed can be adjusted according to the desired output requirements. This feature is beneficial in applications where different speeds are needed for specific operations or to match the requirements of the driven equipment.
  • Versatility: Bevel gears offer versatility in right-angle drives. They can be designed with different tooth profiles, such as straight-cut, spiral, or zerol, to optimize performance based on factors like noise reduction, load capacity, and efficiency. Additionally, bevel gears can be manufactured from different materials, allowing them to withstand different environmental conditions and requirements.
  • Smooth Operation: Bevel gears, especially spiral bevel gears, provide smooth and efficient operation in right-angle drives. The gradual engagement of the curved teeth reduces noise, vibration, and shock during gear meshing, resulting in quieter operation and improved overall system performance.
  • Wide Range of Applications: Bevel gears find extensive applications in right-angle drives across various industries. They are commonly used in automotive differentials, marine propulsion systems, industrial machinery, robotics, aerospace systems, and more. The ability to transmit power at a 90-degree angle efficiently and reliably makes bevel gears suitable for a wide range of applications.

In summary, using bevel gears in right-angle drives offers benefits such as changing the direction of motion, space efficiency, torque transmission, speed adjustment, versatility, smooth operation, and suitability for a wide range of applications. These advantages make bevel gears a preferred choice in numerous industries and systems that require efficient and reliable power transmission at a 90-degree angle.

China Custom Powder Metallurgy Stainless Steel Pinion Shaft Metal Plastic Spur Brass Small Spiral Angular Straight Bevel Small Gear bevel gearboxChina Custom Powder Metallurgy Stainless Steel Pinion Shaft Metal Plastic Spur Brass Small Spiral Angular Straight Bevel Small Gear bevel gearbox
editor by CX 2023-10-25